ย
ย
ย
STM32F407 ADC Six Sample Analog input
#include "stm32f4_discovery.h"
/*************************************************************************/
void RCC_Configuration(void)
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2 | RCC_AHB1Periph_GPIOA |
RCC_AHB1Periph_GPIOC, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_ADC2 |
RCC_APB2Periph_ADC3, ENABLE);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
/****************************************************************************/
void GPIO_Configuration(void)
GPIO_InitTypeDef GPIO_InitStructure;
/* ADC Channel 0 -> PA0 ADC123_IN0
ADC Channel 1 -> PA1 ADC123_IN1
ADC Channel 2 -> PA2 ADC123_IN2
ADC Channel 10 -> PC0 ADC123_IN10
ADC Channel 11 -> PC1 ADC123_IN11
ADC Channel 12 -> PC2 ADC123_IN12
*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_Init(GPIOC, &GPIO_InitStructure);
/*****************************************************************************/
void ADC_Configuration(void)
ADC_CommonInitTypeDef ADC_CommonInitStructure;
ADC_InitTypeDef ADC_InitStructure;
/* ADC Common Init */
ADC_CommonInitStructure.ADC_Mode = ADC_TripleMode_RegSimult;
ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2;
ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1;
// 3 half-words one by one, 1 then 2 then 3
ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;
ADC_CommonInit(&ADC_CommonInitStructure);
ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
ADC_InitStructure.ADC_ScanConvMode = ENABLE; // 2 Channels
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; // Conversions Triggered
ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Rising;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T2_TRGO;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfConversion = 2;
ADC_Init(ADC1, &ADC_InitStructure);
ADC_Init(ADC2, &ADC_InitStructure); // Mirror on ADC2
ADC_Init(ADC3, &ADC_InitStructure); // Mirror on ADC3
/* ADC1 regular channel 0 & 10 configuration */
ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_15Cycles);
// PA0
ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 2, ADC_SampleTime_15Cycles);// PC0
/* ADC2 regular channel 1 & 11 configuration */
ADC_RegularChannelConfig(ADC2, ADC_Channel_1, 1, ADC_SampleTime_15Cycles);
// PA1
ADC_RegularChannelConfig(ADC2, ADC_Channel_11, 2, ADC_SampleTime_15Cycles);// PC1
/* ADC3 regular channel 2 & 12 configuration */
ADC_RegularChannelConfig(ADC3, ADC_Channel_2, 1, ADC_SampleTime_15Cycles);
// PA2
ADC_RegularChannelConfig(ADC3, ADC_Channel_12, 2, ADC_SampleTime_15Cycles);// PC2
/* Enable DMA request after last transfer (Multi-ADC mode) */
ADC_MultiModeDMARequestAfterLastTransferCmd(ENABLE);
/* Enable ADC1 */
ADC_Cmd(ADC1, ENABLE);
/* Enable ADC2 */
ADC_Cmd(ADC2, ENABLE);
/* Enable ADC3 */
ADC_Cmd(ADC3, ENABLE);
#define BUFFERSIZE (40 * 6 * 2) // 40KHz x6 x2 HT/TC at 1KHz
__IO uint16_t ADCTripleConvertedValues[BUFFERSIZE];
// Filled as pairs ADC1, ADC2, ADC3
static void DMA_Configuration(void)
DMA_InitTypeDef DMA_InitStructure;
DMA_InitStructure.DMA_Channel = DMA_Channel_0;
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)&ADCTripleConvertedValues[0];
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)0x40012308;
// CDR_ADDRESS; Packed ADC1, ADC2
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
DMA_InitStructure.DMA_BufferSize = BUFFERSIZE; // Count of 16-bit words
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Enable;
DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull;
DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_Init(DMA2_Stream0, &DMA_InitStructure);
/* Enable DMA Stream Half / Transfer Complete interrupt */
DMA_ITConfig(DMA2_Stream0, DMA_IT_TC | DMA_IT_HT, ENABLE);
/* DMA2_Stream0 enable */
DMA_Cmd(DMA2_Stream0, ENABLE);
/******************************************************************************/
void TIM2_Configuration(void)
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
/* Time base configuration */
TIM_TimeBaseStructInit(&TIM_TimeBaseStructure);
TIM_TimeBaseStructure.TIM_Period = ((SystemCoreClock / 2) / 40000) - 1;
// 40 KHz, from 84 MHz TIM2CLK (ie APB1 = HCLK/4, TIM2CLK = HCLK/2)
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
/* TIM2 TRGO selection */
TIM_SelectOutputTrigger(TIM2, TIM_TRGOSource_Update);
// ADC_ExternalTrigConv_T2_TRGO
/* TIM2 enable counter */
TIM_Cmd(TIM2, ENABLE);
/********************************************************************************/
void NVIC_Configuration(void)
NVIC_InitTypeDef NVIC_InitStructure;
/* Enable the DMA Stream IRQ Channel */
NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream0_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/*******************************************************************************/
void DMA2_Stream0_IRQHandler(void)
// Called at 1 KHz for 40 KHz sample rate, LED Toggles at 500 Hz
/* Test on DMA Stream Half Transfer interrupt */
if(DMA_GetITStatus(DMA2_Stream0, DMA_IT_HTIF0))
/* Clear DMA Stream Half Transfer interrupt pending bit */
DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_HTIF0);
/* Turn LED3 off: Half Transfer */
STM_EVAL_LEDOff(LED3);
// Add code here to process first half of buffer (ping)
/* Test on DMA Stream Transfer Complete interrupt */
if(DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0))
/* Clear DMA Stream Transfer Complete interrupt pending bit */
DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0);
/* Turn LED3 on: End of Transfer */
STM_EVAL_LEDOn(LED3);
// Add code here to process second half of buffer (pong)
int main(void)
RCC_Configuration();
GPIO_Configuration();
NVIC_Configuration();
TIM2_Configuration();
DMA_Configuration();
ADC_Configuration();
STM_EVAL_LEDInit(LED3); /* Configure LEDs to monitor program status */
STM_EVAL_LEDOn(LED3); /* Turn LED3 on, 500 Hz means it working */
/* Start ADC1 Software Conversion */
ADC_SoftwareStartConv(ADC1);
while(1); // Don’t want to exit